GRICAS in front page of Inside GNSS May-June 2017

Dear all,

We are very proud to announce you that GRICAS got the front page of Inside GNSS May-June 2018 issue.

You can read the article here!

Today, it appears that the Cospas-Sarsat MEOSAR system, relying on payloads deployed on GNSS constellations (Galileo, GPS, GLONASS), offers all the conditions to meet the new recommendation of ICAO for ADT-system for Commercial Aviation, with a new generation of in-flight triggered beacons, identical to the current ELT in terms of aircraft integration, but capable of receiving triggers and cancellation events from the avionics, from the crew or from internal sensors, and of detecting and managing their inhibitions to maintain the capability to raise alerts and be localized in any situation. In this article the authors address how the Cospas-Sarsat MEOSAR system offers a solution to support the ICAO GADSS Autonomous Distress Tracking Recommendation. 

Last lap for GRICAS project

20180405_154544.jpgOn April, 4th 2018, GRICAS consortium gathered one last time for the final review of the project. The meeting was held in GSA facilities in Prague, Check Republic.

The final review was the occasion to report the success of the in-flight tests performed late 2017 and early 2018 in Spain, France and Senegal and to formulate test case exploitation recommendations to European institutions with regard to aeronautical regulation and SAR operations.

An overview of the main results and outputs and impacts of the projects on GNSS community (and in particular Galileo users), SAR community and aeronautical community was presented along with the detail of the dissemination activities performed towards these communities to present and promote the use of the Galileo MEOSAR system for to answer to the ICAO recommendations for an Autonomous Distress Tracking system.

Although GRICAS comes to an end after 26 months of operational concept definition, solution design, solution development and demonstrations, the outputs of the project will continue to impact the European industry and infrastructures and in particular GRICAS outputs will be major inputs to the GRIMASSE project funded by the GSA under the Horizon 2020 program (Grant Agreement N°776379), for more details about GRIMASSE follow this link. In addition, GRICAS will be present at the IMO/ICAO Joint Working Group on SAR meeting in Seattle in September 2018 to present in details the results of the flight tests and the recommendations of the project regarding the Cospas-Sarsat MEOSAR-based Autonomous Distress Tracking System. Finally, GRICAS outputs will be valuable inputs for the EUROCAE Working Group 98 Sub-Group 1 that works on the definition of a MASPS for the Aircraft ELT Return-Link Service.

GRICAS final in-flight tests: when Europe and Africa work together to improve commercial aviation safety!

On February, 20th, GRICAS consortium, ASECNA director and CNES president tested the automatic in-flight activation of the GRICAS distress beacon, a demonstrator of the Cospas-Sarsat ELT(DT)

After an intense and successful in-flight test campaign performed during 2017 (with 4 field trials in April, July, November and December), GRICAS project team completed the test activities with an exceptional flight test hosted by ASECNA in Dakar, Senegal, on Friday, 23rd of February 2018.

For this very special occasion, GRICAS consortium members (Thales Alenia Space, PILDO Labs, ECA Group-ELTA, STMicroelectronics, CNES and ASECNA) received the support of Mr. Mohamed MOUSSA, General Director of ASECNA, and Mr. Jean-Yves LEGALL, President of CNES and President of Administration board of GSA, who participated to the flight test.

As with the previous tests, the GRICAS end-to-end demonstrator of an Autonomous Distress Tracking system based on Cospas-Sarsat distress beacon was installed on-board the test aircraft: the ASECNA ATR 42 and after successful ground tests, the test engineers completed successfully the test plan to demonstrate the compliance of GRICAS solution to ICAO recommendations and EUROCAE specifications for an Autonomous Distress Tracking system. As reminder, GRICAS end-to-end demonstrator is composed of:

  • An ELT-DT prototype (distress tracking) based on a Second Generation COSPAS-SARSAT distress beacon representative of what a real ELT-DT could be (in terms of electronic components, mechanical and functional interfaces and functions implemented) integrating a GNSS chipset TESEO III, Galileo and GPS compatible.
  • A remote control panel for the ELT(DT) based on the existing remote control panels for ELT present in the cockpits.
  • An on-board demonstration platform emulating the Beacon Activation Logic (based on avionics) and then sending the automatic triggering commands to the beacon and the GNSS receiver of the avionics (GPS only). The ODP also provides the logging functions and the GNSS reference trajectory.
  • A L-band MEOLUT Next in Thales Alenia Space implementing a SGB real-time processing software

Friday, 23rdof February was expected by the entire consortium and supporters of the SGB solution for Autonomous Distress Tracking as it was the first time a demonstrator representative of what a Cospas-Sarsat ELT(DT) could be was activated automatically on-board a commercial aviation aircraft.

One of the conducted scenarios was based on an altitude threshold representative of a distress scenario: when the aircraft went beyond the threshold altitude considered as an unusual flight altitude, all the participants witnessed the automatic activation of the beacon that initiated transmission of an alert message to inform the SAR responders of the in-flight distress.

The beacon transmitted an alert message, received and processed by the GRICAS MEOLUT localized in Thales Alenia Space facilities in Toulouse and the French commissioned MEOLUT localized in CNES facilities in Toulouse as well, more than 3600km far from Dakar. Despite these conditions degraded  compared to Cospas-Sarsat requirements (the nominal Coverage Area of the French MEOLUT is 3000 km), the performances of the French MEOLUT wereremarkable and the detection probability for the tests was close to 100%, knowing that current Cospas-Sarsat specification requires a detection probability of 95%.

Moreover, the localization performances are also excellent and significantly better than the specification Cospas-Sarsat T.019 of 5km at 95%, as it can be seen in the table below.

Tableau.PNG

Table 1: Independent location accuracy of the GRICAS ELT(DT) SGB demonstrator during the flight test on-board the ASECNA ATR-42 in Dakar in Feruary 2018

Mohamed MOUSSA declared « The demonstration tests of these distress beacons mark the beginning of a new step in the development of an autonomous and performing alert system on-board aircrafts to identify in real-time in-flight distress situations.».

The complete results of the tests will be presented by Thales Alenia Space to the Cospas-Sarsat Expert Working 1 in April 2018 in Montreal.

 IMG_7859.jpg

Figure 1: GRICAS demonstration platform installed in-front of the in-flight engineer on-board teh ASECNA ATR-42

DSC_1513.jpg

Figure 2: GRICAS test team and ASECNA members in front of the ASECNA ATR-42 used for the GRICAS final in-flight tests

20180222_103608.jpg

Figure 3: The GRICAS beacon and the GRICAS demonstration platform on-board the ASECNA ATR-42

GRICAS ELT(DT) at the forefront of Autonomous Distress Tracking of GADSS solutions

In-flight remote activation of COSPAS-SARSAT distress beacon thanks to Galileo Return-Link Service: a solution to MH370 disappearance? GRICAS demonstrates its feasibility!

After the success of the demonstration in Barcelona in April 2017, two more field trials have been conducted over the past 10 days, using the GRICAS SGB ELT(DT) on-board an aircraft to automatically trigger the transmission of distress signals.

But GRICAS project was looking for a more ambitious goal to reach: remote activation of a beacon on-board a non-cooperative aircraft, and that is what they succeeded to do. On November the 29th and December the 6th 2017, the pre-operational Galileo Return Link Service operated by CNES in Toulouse was used to transmit the 4 RLM defined within the GRICAS operational Concept:

  • Activation of an ELT(DT)
  • Deactivation of an ELT(DT) (activated by a RLM)
  • Acknowledgement of the reception of cancellation messages after an automatic activation
  • Acknowledgement of the reception of cancellation messages after a manual activation by crew

The 4 RLM were sent to the GRICAS SGB ELT(DT) installed on-board the flying test airplanes used for the field trials. The first field trial took place at the Aeroclub of Sabadell near Barcelona, on-board the same Cessna 182 used in April 2017. The 4 GRICAS Return-Link test cases were successfully transmitted and received by the beacon and the whole GRICAS operational concept was validated. It is to be noted that the automatic activation scenario was fully automatic, with a triggering command sent to the beacon by the Beacon Activation Logic (or Triggering Logic) under a unusual altitude criteria detected thanks to the internal GNSS receiver of the beacon.

The 6th of December, the second field trial was conducted in Toulouse, on-board a Falcon 20 provided by SAFIRE (lien). The same scenarios were successfully completed, using automatic trigger based on an altitude threshold and the Galileo Return-Link Service. The test was even more ambitious this time, as the test airplane flew above 10.000 m (32.800 ft) with a typical cruise velocity of 800 km/h, which corresponds to an altitude and a speed representative of a commercial aircraft (A320 for example) specifically identified as the target of the GADSS concept of ICAO.

 IMG_20171206_095040308.jpg

GRICAS demonstration platform integrated in a 4U rack and including the GRICAS ELT(DT) SGB

DSC00712.JPG

SAFIRE test aircraft FALCON 20 ued for GRICAS 3rd field trial

GRICAS participates to C/S JC-31 in Montreal

GRICAS consortium (CNES, Thales Alenia Space and ELTA) participated to Cospas-Sarsat Joint Committee 31 in October2017in Montreal, Canada, to present the progress of GRICAS project and the results of the two first GRICAS in-flight demonstrations. GRICAS consortium released 8 papers directly linked to GRICAS progress and outputs, both working and information papers, all very well received and debated during the plenary and splinter meetings of the Joint Committee and the Operational and Technical Working Groups:

  • JC-31-0414: MEOLUT and MCC interface specifications for moving beacons
  • JC-31-0432: Recommendations for ELT(DT) cancellation management by MCC and RCC
  • JC-31-Inf-01: Localization performances of SGB ELT(DT) prototype on-board an aircraft and a rotorcraft
  • JC-31-Inf-02: considerations on location of moving beacons in the MEOSAR system
  • JC-31-Inf-05: Performance results on C/S T.001 static and moving beacons
  • JC-31-Inf-06: Performance results on SGB static and moving beacons
  • JC-31-Inf-07: Considerations on operational management of moving beacons at MEOLUT and MCC level
  • JC-31-Inf-40: Considerations on ELT(DT) position errors

GRICAS, thanks to Thales Alenia Space, the project coordinator, was the major contributors to publications on the most sensitive items of the meeting with a total of 16 papers addressing:

  • Moving beacons including ELT(DT)
  • Performances and impacts of SGB
  • Interferences in the SAR band
  • Reference beacons for the MEOSAR

The participation of GRICAS partners to C/S meetings has been very much appreciated.The quality and relevance of the presented papers (all addressing major agenda items) were highlighted several times by the Secretariat of C/S and the key delegations (Canada, USA, Russia, France, United-Kingdoms…).The involvement of GRICAS consortium and the operational and technical approach led to excellent working relationships with the JC participants. GRICAS consortium, in particular through Thales Alenia Space representation,distinguishes itself from its competitors with a dual approach well balanced between operational and technical problematic. It is now known as a COSPAS/SARSAT partner looking for solution fitting the expressed needs and difficulties of the SAR operators. Its contribution to the Operational Working Group is valued and appreciated as much as its participation to the Technical Working Group.

GRICAS consortium took the opportunity of a SAR responders splinter gathering most of the SAR operators attending the C/S JC-31 to remind them of the necessity to express their needs and difficulties in SAR operations so that Research and Development projects like GRICAS and future H2020 European projects of GSA can work on developing appropriate solutions and make C/S MEOSAR and Galileo SAR the best solution to SAR challenges.

Finally, C/S participants are now looking forward to hearing from GRIMASSE project progress as they expect GRIMASSE consortium to pursue for General Aviation the actions initiated with GRICAS to help bring C/S MEOSAR and Galileo SAR to their best potential.